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OPTIMAL COMPUTING FORMS FOR THE
TWO-BODY C AND S SERIES

INTRODUCTION

The classical solutions of the two-body problem separate naturally into the
three cases of elliptic, parabolic, and hyperbolic motion, the mathematics being
considerably different for each case. A unified formulation is possible, valid
for all three cases, if certain transcendental functions, which we call the C and S
functions, are introduced.

The unified formulation is fully developed by Battin [1] and will not concern
us here. The purpose of this paper is the presentation of approximations for the
C and S functions and their derivative functions which reduce significantly the
computation times required for their evaluation when compared to that required
by Taylor series expansions.

THE C AND S FUNCTIONS

The C and S functions are defined by

S(x) = (x1/2 - sin xl/"’)/x3/2 s x>0 (1)
= [sinh (=02 - (072] (0¥, x <o (@)

C(x) = 1 - 1/2)/x, >0
( cos X x )
= [1 - cosh (—x)l/z]/x, x <0 (4)

Since these functions are indeterminate for x = 0 and present accuracy
problems when evaluated in the neighborhood of x = 0, it is natural to



replace the above forms by the following series, convergent for all values
of x:

(=x)*

S(x) = 2iF3) (5)
i=0

C(x) = 72%:‘% : (6)
i=0

For large values of x, the convergence of these series will be slow, It is
then convenient to use the following reduction formulas, easily derived from the
definitions (1) through (4):

A(x) = 1 - xS(x) |, (7)
2c(4x) = [Ax)]? (8)
45(4x) = S(x) + A(x)C(x) . (9)

THE C' AND S' FUNCTIONS

The derivatives S’(x) and C’'(x) are needed for certain problems of orbit
determination, guidance, and optimization. From (1) through (4) we obtain

s'(x) = [cx) - 3s(x))/2x

C' (%) [Ax) - 20(x)]/2x

These forms suffer accuracy problems in the neighborhood of x = 0,
again forcing us to series representations. Differentiating (5) and (6),




we have

N it

S'(x) = IEINR (10)
o1
C'(x) = (EE_—+X%)!‘ ’ (11)

i=1

convergent for all values of x.

For large values of x, the following reduction formulas (obtained by dif-
ferentiating (7), (8), and (9)) are useful.

B(x) = S(x) + xS'(x) , (12)
C'(4x) = -A(x)B(x) |, (13)
4S'(4x) = S'(x) * A(xX)C'(x) - B(x)C(x) . (14)

THE FIKE-KNUTH ALGORITHM

Our first step in obtaining economical computing forms for (5), (6), (10), and
(11) was the construction of sixth degree polynomial approximations on various
intervals in the sense of Chebyshev. In other words, these polynomials minimize
the magnitude of the maximum error on the interval., The program to accomplish
this was written by the third author, based on ideas of Stoer [2] The coefficients
of these polynomials are given in Numerical Results.

Assume the approximating polynomial has the form

P(x) = a, +a;x + a,x’+a;x? + a,x* +ax® +ax® . (15)

The evaluation of (15) by the usual method of nested multiplication
requires 6 multiplications and 6 additions. However, using recently



developed polynomial evaluation methods [3, 4}, (15) can be evaluated with 4
multiplications and 7 additions. The form and parameters for the algorithm,
as it applies to our functions, are given in Numerical Results.

In the following description of the algorithm, a, is assumed to be positive.
If a; is negative, a minor change is necessary.
6
Fike's modification of Knuth's method begins with a conversion: let u = Yag,
and let ¢, = a /u* for k = 0,1,.., 5. Then compute

P = 3 (e D= ey - eC

B' = ¢, ~p(ptl) E' = 2o' -B' +1

C' = ¢y - pB’ E' = 2 -B'D' -C'
D' = p-B E' = ¢, - B'D"

Find a real root g of the cubic equation*

2q3 + E! q2 n Euq + E" = 0 (16)
and compute
1
A = 5B -gq
C = p-2A

B = g - 2AC - A2
D = €' -qfl +D’) - q2-D"-A2(1+C) - BC
E = q2+qD + D" - (A2+B)C

F = ¢ - (a+ap ) [c' - q(1+D) - o® - D],

*See Appendix I.




Then our polynomial can be evaluated as follows:

Q, = pMx
a, = (a; + A
43 = (a, * B)(a, * C)
P(x) = (q, + q; + D) (q; + E) + F

In case ag < 0, let T(x) -P(x) and perform all the steps above, except the
last, for T(x). The last step should be

P(x) = -[T(x)] = (q2 +q; D) (—q3 —E) -F

If the machine being used has a '"'load negative" feature which is equivalent
in execution time to '"load positive", and if subtraction is likewise equivalent to
addition, then this modification is equivalent to the original.

As Fike points out, his method is a slight variation of that of Knuth [4] , and
since Knuth's method was inspired by Motzkin [5], the three types bear a strong
family resemblance. Each begins with a polynomial in form (15)with ag = 1,
and solves for the parameters in the final evaluation scheme by expanding the
scheme into a sixth degree polynomial and equating its coefficients with those
of form(15). To admit treatment of the general polynomial of degree six, how-
ever, some transformation must be made so that ag = 1. The most straight-
forward way is

Qx) = P(x)/ag

and then applying any of the three methods to Q(x), adding an extra step at the
last in multiplying the result by a,. Fike specifies a different sort of trans-
formation; his may be thought of as converting form (15) into

a a a a a
5 4 3 2 1
_5+_4+—3+_2+._
s X g X 3 X 2 X n x 1 a,

R(x) = x5 +
() " p 7 i



Again, any of the three methods apply to R(x) and values of P(x) are obtained
by using pgx in the scheme for R(x), since R(ux) = P(x).

This transformation, though a bit more complicated, is admirably suited to
our particular problem. The type of polynomial with which we are dealing has
the not uncommon characteristic that

lagl < lagl <. .. < lay]

and, in addition, |a4| is very small. For example, suppose the coefficients of
form (15) are

ag = + .11 x 10710
a, = - .21 x 1078
a, = + .28x 107°
a; = - .25x 107%
a, = + .14 x 1072
a, = - .42x 107!
a, = + .50

If we use the division transformation, the coefficients b, of Q(x) are

b, = + 1.0

by, = - .18 x 10°
b, = + .24 x 10°
b, = - .22x 107




b, = + .12 x 10°

- .36 x 101

o
"

b, = + .44 x 10!

Here the errors in the numbers a; have become greatly magnified; worse yet,
the arithmetic of parameter production using the large numbers b, is likely to
suffer the effects of large error propagation. In contrast, Fike's transformation

gives us

cg = 1

cg = - .27 x 10!
c, = *.54x 10!
c; = - .73x 10!
c, = +.62x 10!
c, = - .28 x 10!
c, ~ .50

These numbers of manageable size lend themselves very well to whichever
scheme we choose. For comparison, the two transformations above were
evaluated by the Knuth algorithm for 40 points over the interval [— 1, + 1] ,
and the differences between these values and the true values of the polynomial
were obtained. For the division transformation, the absolute value of the
maximum error was .92 x 10~ ”; for the Fike transformation, this was

.16 x 107'* | a reduction by a factor of more than 500. Several other test
cases were run, with results which apparently verify the conclusion that the
Fike transformation used on this type of polynomial has a very definite advan-
tage. There are, of course, other transformations which produce polynomials
in which ag = 1. In general, one should use the transformation which keeps
the coefficients of the transformed polynomial as small as possible.



NUMERICAL RESULTS

The four approximation polynomials were generated for each of the intervals
[— 1, + 1] , [— 2, +2] , [-4, +4] , [— 16, + 16], converted to form (15) and param-
eters for the Fike evaluation scheme were obtained. In each case, the values
given by the final scheme were tested against "true" values of the original
function for all multiples of .002 in the interval concerned. The '"true' values
came from expanding the power series of the function (1) for enough terms to
guarantee that the relative error from truncation would be less than 10713,
The following tables exhibit, for each of the sixteen functions considered, the
coefficients a; for form (15), the parameters A, B, C, D, E, and F for the Fike
scheme, and the maximum absolute errors for both methods. For comparison,
a degree 4 approximation polynomial was evaluated by both methods for the
functions C(x) and S(x) on the interval [- 1, + 1] , and the results are presented
here also.




C(X) =ag *a;x +ayx? +agx3 +a x4 +asx> +agxé on [—h, E]

h=1

ag = +0.4999999999999998 X 10°
ay = -0.4166666666667176 X 107!
+0.1388888888888999 X 10~2

a, =
a§ = -0.2480158725995993 X 10"
ay = +0.2755731917059028 X 10
as = -0.2087759200397967 < 10:?0
a, = +0.1147134108311665 X 10

Mo= 0.76327833 X 10~ 1°

h=4

ag = +0.4999999999998401 < 10°

a; = - 0.4166666668808485 < 107!
a, = +0.1388888889138842 X 10”2
as = -0.2480157659289839 X 10~*
a, = +0.2755731272513377 X 107°
ag = -0.2089014196095935 x 10~8

a
6
Ma= 0.12239224 X 1010

(1 O (| I

+0.1147636934013430 % 10~ 10

h=2

ap =+ 0.4999999999999993 x 100
a; =-0.4166666666700118 X 10~
a, =+0.1388888888892785 X 10”2
az = -0.2480158663241807 X 10™*
a, =+0.2755731881710992 X 107°
a5 = -0.2088010277268315 x 10”8
ag =+0.1147215380312168 % 10™°

Mg = 0.95645714 X 10~ 13

h=16
ap = +0.4999999894793170 X 10°
a, = -0.4166675473500692 X 107!
a, = +0.1388889916034137 X 1072
ag = ~0.2479883633119184 X 1074
ay = +0.2755565077419917 X 107¢
as = -0.2109148028487573 X 10”2

ay = +0.1156091702389399 x 107 '°
Ma=0.20159773 X 106



6
q] =+ ag X

g2 = (a) + A)?

q3 = (42 + B) (9; + C)
C(X)=(dz+d3+D) (+93 +E) +F on [-h, h]

h=1

A =+ 0.4513408582627891 X 10°
B = +0.3744865190483202 X 10!
C = -0.2769272800754423 X 10"
D =+ 0.9433565393074166 X 10"
E =+0.1055413968372178 X 102
F = +0.6288190624578802 X 10”2

M = 0.5828670879282069 X 10” '

h=4

A =+ 0.4507019590625572 X 10°
B = + 0.3740448131455307 X 10!
= -0.2768317205414987 X 10"
D = +0.9414899439055362 X 10’
E = +0.1053701311149719 X 102
= +0.6272339359526764 X 10”2

M= 0.1224323420423443 X 10" '°

10

h=2

A = +0.4512008438957284 X 10°
B = + 0.3743936586512442 X 10"
C = -0.2769076432349482 X 10!
D =+ 0.9429681327692907 X 10}
E = +0.1055053194443676 X 102
F = +0.6284207351324604 X 102

M= 0.9935108291614367 X 10~ '3

h=16

= + 0.4405766736959988 X 100
+ 0.3669989101432331 X 10
- 0.2752824996097087 X 10]'
+0.9117484138879304 X 10
+0.1026464040151929 X 102
+0.6161613003116790 X 10~2

0.2015977389469012 X 10~¢

L m"mOU0Ow >
nnun u i




S(X)=ay +ta;x +tayx2 +azx3 +ayxt +agxd +agxé

h=1

ag = +0. 1666666666666665 X 10°
ay =-0.8333333333333568 X 10”7
ap =+0.1984126984129264 X 10"
ag = -0.2755731919939401 X 10”7
a, =+0.2505210785999854 X 10”_
a5 = - 0. 1605953765319026 X 10

ag =+ 0.7650283228592385 X 10”2

Mg =0.55511151 X 10~ 16

h=4

ag =+ 0. 1666666666666581 X 10°

a; = - 0.8333333334593103 X 1072
a, = +0.1984126984258407 X 1073
ag = -0.2755731292513204 X 1073
as = +0.2505210496761327 X 1077
a5 = - 0.1606691704048320 X 10~°
ag = +0.7650122280184766 X 107 2

Mg = 0.72000739 X 10~ 12

11

on [-h, h)

h=2

ag = +0. 1666666666666663 X 100

a; = -0.8333333333352921 X 1072
a, =+0.1984126984129057 x 1073
-0.2755731883077317 X 10~ >

33 =
a, =+0.2505210816170333 X 10~/
a5 =-0.1606101133600677 X 10 =7

ag =+0.7647926042737674 % 10”12
Ma=0.56621374 X 10714

h=16

ag =-+0.1666666661133027 X 10°

- 0.8333338509758059 X 10™2
+0.1984127524406629 X 1073
- 0.2755570214946503 X 107>
a, =+0.2505123071826789 X 10'Z>
as =~ 0.1618528418504030 X 10~

ag =+0.7694603615375217 X 10712

Mg =0.11845921 X 1077

i



6
q] =+vag X

q, = (a4 +A)?

q3=(q2+B) (q] +C)
S(X)=(4, +d3 +D) (+q3 +E) +F on [-h, h

h=1

A =+0.1030541110544949 X 100
= +0.1357446199107850 X 10!
- 0.1709888012144409 X 10"
+0. 18039606 16654583 X 10
+0.2062171852872241 X 10
+0.2130010466488949 X 10”!

[T |

T mmUOOw

h=4

0.1026453527945748 X 10°
0.1356011711587295 X 10!
- 0.1709549340846876 X 10}
+0.1800557277079013 X 10!
+0.205924687 4696585 X 10!
+0.2125209137884825 X 10"

Z MmO w>
I O TR
+ +

i

0.2359223927328455 X 10~ 4

0.7223804887601657 X 10”2

12

A=+0.
B=+0.

D =+0.
E=+0.
F=+0.

A =+0.
B=+0.
C=-
D =+0.
E=+0.
F=+0.

h=2

102827 4494783523 %X 10°
1356879505417743 X 10!

. 1709784631095070 X 10!

1802832347589989 X 10!
2060949727430426 X 10!
2128753997322974 X 107!

.8076872504148012 X 10~ 14

h=16

9898746283297480 X 107!
1338586121335949 X 10!

. 1704756186376375 % 10!

1754906650979839 X 10}
2025050653157090 X 10}
2056593593968585 X 10”!

. 1184592103575797 X 1077




C'(X)=ag tayx +agx2+ayx3 +ayx4 +azx5 +a,x6 on [—h, h]

h = ] h = 2
ag =-0.4166666666666430 X 10 ‘ ag = - 0.4166666666606742 X 107!
ay =+0.2777777778467318 X 1o a, = +0.2777777822034584 X 102
ap =~ 0.1488095238678453 X 1073 a, = - 0.1488095275535492 X 1073
a3 =+0.6613751098214413 X 1o ag = +0.6613668137463213 X 1073
a, =-0.2505208412532178 X 107° a, ==0.2505171918626241 X 10~¢
ag =+0.8269965205281566 X 108 a, =+0.8303136595603477 % 10°8
ag =-0.2412214891589441 X 1077 a, =~ 0.2422316681583509 X 107
Maq= 0.21684043 X 107 ¢ Ma= 0.25058081 X 10~ 14
h=4 h=16
ag = - 0.4166666651125364 X 10~ ' ag = - 0.4166666641763858 X 107!
ay = +0.2777780643726382 X 10~ a, =+0.2777780078584500 X 10'2
a2 = -0.1488097663598733 X 1073 ap = -0.7440478621862503 X 1074
a3 = +0.6612326049924104 X 1073 ag = +0.1102220894089232 X 1073
4 = - 0.2504581368842600 X 10~ ay = -0.1043798352532477 X 1077
= +0.8437138609417991 X 10' as =+0.6938557071056230 x 10710
aé = -0.2463133603265637 X 10~7 ag = - 0.3366982823031963 X 10712
Mq=0.31997321 X 10712 Mq = 0.52654049 % 1078

13



9 =$

as

92 = (9 +A)?
q3 = (92 +B) (9, +C)
C'(X)=(dp +93 +D) (=93 - E) = F on [-h, h]

h=1

A =+0.6421500675794880 % 10 ="
B =+0.9631412054424315 % 10°
C = -0.1485378935681960 % 10
D = +0.1206516480446427 X 10!
= +0.1262370275488431 X 10!
F = +0.2235785774036898 X 10 ~2

M = 0.1786765180256109 X 10~ 13

h =4

A = +0.6405925631551870 % 10 !
B = +0.9624584033933687 X 10°
C = -0.1485269967153406 X 10!
D = +0.1205018912730453 X 10!
E =+0.1261394717119364 X 10"
F =+0.2210887038704210 X 10™2

M = 0.3200469403386028 X 10”2

14

h=2

A = +0.6415596248585610 X 10 ~!
B =+0.9629599640982438 X 10°
C = -0.1485350658374242 X 10
D = +0. 1206153148806730 X 10
E=+0.1262088821410514 X 10!
F = +0.2230745797490601 X 10 ~2

M = 0.2680147770384164 X 1

h=16

+0.6208183431484613 X 10 -
+0.9523193847619871 % 1090
- 0.1483582934430130 X 10 |
+0.1182131124018069 X 10!
+0.1247277466997771 X 10!
+0. 1829570481293727 X 10 =2

M = 0.5265405070287163 X 1078

TmO0O m P
[ T | R TR ||




SX)=ay +a;x tagx? +a3x3 +ayx* +agx> +agxé on [—h, h]

h=1 h=2
ao = -0.8333333333333210 X 10 -2 ag = -0.8333333333304809 X 1072
a; = +0.3968253968616768 < 10~ 3 a, =+0.3968253991531185 X 103
2 = - 0.1653439153716376 X 10~ ap = =0.1653439171256403 X 10~ 4
5 = +0.6012503110063301 % 10' az = +0.6012459474285134 x 10~¢
iy 4 = -0.1927084107177350 X 10~/ ay = -0.1927066737597982 % 1077
a5 =+0.5511761621292874 X 10°° a5 = +0.5529210296030711 % 10~
a, = -0.1418571972378231 % 10710 = ~0.1423381311296310 x 1010
M = 0.26020852 x 10~ 17 Ma= 0.13444107 X 10713
h=4 h=16
ap = - 0.8333333325953303 X 10 =2 ay = - 0.8333333321480760 X 102
a, = +0.3968255472561213 X 10 -3 a, =+0.3968255178485000 % 10”3
a. = -0.1653440305444520 X 10 ~4 a, = -0.8267196924462379 X 10™°
ay = +0.6011754909568150 x 10 =4 ag =+0.1002046526767437 X 107°
ay = -0.1926786201990815 X 10 =7 a, = -0.8029333915166488 X 1077
as = +0.5599576811597955 X 10 ~* ag = +0.4617817733427159 X 10~ ]
a, = -0.1442776137237285 x 10~ '° ag = -0.1978183008506138 X 107"
Ma= 0.16841563 X 10-13 Ma= 0.27690121 X 10-7

15



q1=6\/-§x
a; = (q; A)?

q3 =(q2 + B) (a4; + C)
S (X)=(q2 +93 +D)(-93-E)-F on [-h, h]

h=1

~0.4272502910304863 X 10~!
+0.4460409572215307 X 100
-0.1020276052465536 X 10!
D =+0.4064530281034859 X 10°
E =+0.3450015283629582 X |0°
F =+0.2885054406289098 X 1072

0w >
[

M= 0.5290906601729259 X 10~ '¢

h=4

A =-0.4274056995233864 % 10~
B =+0.4458621272744412 X 10°
C =-0.1020307887595762 X 10!
=+0.4061739766937458 X |0°
=+0.3449170623874602 % 10°
=+0.2876661053629565 X 102

M= 0.1689186984732414 X107 '3

mm g

16

h=2

A =-0.4272336986330691 X 10~
B =+0.4460090638507059 % 10°
C =-0.1020282840851638 x 10!
D =+0.4064007086884238 X |0°
E =+0.3449898120978949 x 10°
F =+0.2883373149053849 X 10~2

M= 0.1821459649775645% 10~ ">

h=16

-0.4310245077956152 % {0~!
+0.4428994350437274 < 100
-0.1020789569928175 X 10!
+0.4016042135773923 X 10°
+0.3434241762739658 X 10°
F =+0.2744481265299470 X {0~ 2

M= 0.2769012918263367 X< 10-°

moOw® )
T | I | I I VI |




P(X) = ao+a]x+a2x2+ apx3+ a4x4

C(x)#4 [-1,+1]

ag = +0.5000000000007167 X 100

a
1
a, =+0.1388888879568642 X 1072
a3 = -0.2480419696201834 X 10”4
a, =+0.2755932664579228 X 10-6

-0.4166666601424471 X 107!

Mg = 0.13048673 X 1077

mgO® >

9,

= Ax

S(X)*4 [-1,+1]

ag =+0.1666666666667142 X 100

a, = -0.8333333283147393 X 10~ 2
a, =+0.1984126977913694 X 1073
ag = - 0.2755932664326337 X 107>
a, =+0.2505344666229896 X 1077

Mg = 0.10037290 X 1019

q2=(q] +B)2
P(x)=(q, +q,+C)(q,+ D) +E

c(x) 4 [-1, +1]

=+0.2291221893900772 X 10~ !
= -0.7655416156428518 X 100
= +0.2592589041826887 X 100
=+0.4011554686880556 X 100
= - 0.3345008393894142 X 100

0.1304868574303339 X 1077

17

S(X) #4 [-1,+1]

=+0.1258104947765253 X 107!
= -0.5959855810891701 X 10°
=+0.1104585254341674 X 100
=+0.2038526154314646 X 100
= - 0.9365973340739070 X 10!

moQoOH® >

M = 0.1003741534333355 x 10~ 1°
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APPENDIX 1

The cubic equation (16) was solved by an interval-halving technique which can
be extended to any continuous function f. In general, this technique gives us the
""smallest" (in the sense of representability by computer) interval in which a
value x can lie such that f(x) = O, and this smallest interval can be found by
a finite, fixed number of iterations. The most familiar interval-halving process
consists of two parts: (1) finding the initial bracketing interval, the interval
[a, b] in which f(x) changes sign, then (2) successively halving this interval,
choosing each time the subinterval in which f(x) changes sign, until the interval
is as small as desired. If part (1) is performed properly, then part (2) can be
performed with a number of iterations determinable a priori, thus eliminating the
test for interval size at the end of each iteration.

To begin, choose a number v and a number t, of the same sign as v, such
that [t] < [vl. [Positive v's are used for positive roots and negative v's for
negative roots.] Test the following sequence of intervals for a sign change of

f(x):

(1) [v. v+t
(2) [v+t, vetroat]

(3) [v+t+2t, vit+2t+at

: p ptl
(p+t2) v+ E 2it, v + E 2it
i=0 i=0

until the initial bracketing interval is found. Since |t| < |v|, we have

lvl + 29%1 |¢] - [t] 2 29%% ¢ =2

v + |t] (291 - 1) 2 29*1 || >
q

vl + fel Zzi > [ a1 ¢
1=0
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and since v and t have the same sign, we have

v +Z 2it| > |29+1 ¢

n

0

i

This simply says that the length of the initial bracketing interval is less than, or
equal to, the magnitude of the small end; in turn, this means that the large end
of the interval is at most twice the magnitude of the small end.

Now, consider how the endpoint values would be represented in floating-
point binary arithmetic (normalized) with an r-bit fraction. If the difference
between their binary exponents is at most 1 (which is what we are getting at
above), then it can be seen that the number of distinct points in the initial
bracketing interval is at most 27, Therefore, the number of interval-halving
iterations needed—that is, the number of times one reduces his choice of points
in the interval by one-half—is at most r. Moreover, it often turns out that f is
nearly (or exactly) zero at an end point of one of the half-intervals, so that r
iterations are not always needed.

We have treated the special case |[t| < |v| , but we need not restrict our-
selves to it. The number of interval-halving iterations needed depends upon the
size of t, and if one is willing to iterate a bit more he can find the initial
bracketing interval more quickly by increasing t; the converse of this also
holds.
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